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This Internet Appendix (hereafter IA) accompanies Boyer and Vorkink (2014) and reports ad-

ditional results related to that paper. In Section I below we provide summary statistics on open

interest for the ex-ante skewness portfolios analyzed in Tables II to VII of the paper. In Section II

we investigate the sources of variation in our ex-ante skewness measure. In Section III we examine

the importance of stock skewness for explaining variation in option skewness. In Section IV we

examine CAPM alphas for option portfolios in the following five settings: 1) after sorting options

unconditionally on moneyness and ex-ante coskewness, 2) using instantaneous betas, 3) after adjust-

ing the window to estimate stock moments that are inputs to our ex-ante skewness measure, 4) after

accounting for the possibility of early exercise, and 5) after unconditionally sorting on the raw third

moment. In Section V we report the CAPM alphas of the stocks underlying the options after con-

trolling for momentum effects. In Section VI we use a double sort procedure to individually control

for a variety of option characteristics. And in Section VII we report the results of a simulation study

to further investigate whether peso problems or estimation bias can explain our results.

I. Open Interest

In this section we report summary statistics on open interest for the options within each of the

skewness/maturity portfolios analyzed in Tables II to VII of the paper. In Panel A of Table IA.I we

report average open interest, the average number of outstanding contracts per option across portfolio

formation dates.1 Panel B of Table IA.I reports total dollar open interest across portfolio formation

dates. Total dollar open interest on a given day is the sum of closing price times open interest across

∗Citation format: Boyer, Brian H., and Keith Vorkink, Internet Appendix for “ Stock Options as Lotteries”, Journal
of Finance [DOI string]. Please note: Wiley-Blackwell is not responsible for the content or functionality of any support-
ing information supplied by the authors. Any queries (other than missing material) should be directed to the authors of
the article.

1We use closing open interest for the day before each portfolio formation date.
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all contracts in a skewness/maturity portfolio. We also report the standard error for the difference in

each characteristic across the bottom and top skewness quintiles, calculated using the approach of

Newey and West (1987), in part to account for overlapping observations of options with 48 days to

maturity.

In Panel A of Table IA.I we see that average open interest is monotonically increasing in skew-

ness and significantly higher for options in the high skewness bins at all maturities. For example,

among call options that expire in seven days, we observe an average of 2,400 (3,937) contracts out-

standing per option for contracts in the low (high) ex-ante skewness bin. Average dollar open interest

reported in Panel B of Table IA.I, however, is decreasing in ex-ante skewness because options with

high skewness are relatively cheap. For example, among call options that expire in seven days, the

average total open interest is $441 million ($19 million) across all contracts in the low (high) ex-ante

skewness bin.

II. Variation in Ex-Ante Skewness

In this section we examine the influence of each input to our ex-ante skewness measure on the

measure itself. On each portfolio formation date for options that expire in seven days, we inde-

pendently rank options into 100 bins based on each input to our ex-ante skewness measure and on

the measure itself. We then estimate Fama-Macbeth (1973) regressions using these ranks with the

ex-ante skewness rank as the dependent variable and report results in Table IA.II. In the first column

of Panels A and B of this table we see that moneyness alone explains on average about 92% of the

cross-sectional variation in ex-ante skewness for calls (Panel A) and about 93% for puts (Panel B),

measured by the average adjusted-R2. Price alone also exhibits a high average adjusted-R2 (column

2), but this is due to its correlation with moneyness. In column 6 we add price to moneyness and see

that the incremental improvement to the adjusted-R2 relative to column 1 is very small. The input

with the greatest explanatory power after controlling for moneyness is volatility. In column 7 we see

that adding volatility to moneyness improves the adjusted-R to 97% for both calls and puts.2 Finally,

in column 10 we include all our inputs and see that the adjusted-R2 improves to 98%.

2We include the interaction term whenever we control for volatility and moneyness because the effect of volatility
on skewness depends on moneyness (see Figure 2).
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III. Underlying Skewness

Cross-sectional variation in the skewness of option returns is likely to be driven in part by vari-

ation in the skewness of the underlying assets. Although the lognormal assumption allows for vari-

ation in skewness across stocks, it cannot perfectly characterize such skewness. We choose to rely

on the assumption of lognormality because of its simplicity and familiarity to the finance profes-

sion. Since the finance profession is familiar with the lognormal PDF, our option moments should

be easier for readers to understand and less prone to accusations of cherry picking. We chose our

methodology due to its clarity and trasparency and to avoid methodologies succeptible to black-box

criticisms with little intuition and an abundance of degrees of freedom.

That being said, in this section we investigate the importance of variation in stock skewness for

explaining the skewness of option returns. To do so, we forecast the skewness of stock returns using

an approach that does not rely on the lognormal assumption and first sort stocks into stock skewness

terciles. Then within each stock skewness tercile, we sort options into option skewness terciles

as described in the paper under the assumption of lognormality. We then empirically investigate

the skewness of option returns within each bin, measured as the average cross-sectional skewness

among options within each bin, as in Table II Panel B of the paper.3 This empirical measure of

skewness also does not rely on the lognormal assumption. This double sort allows us to investigate

how much variation in option skewness is driven by variation in stock return skewness versus other

characteristics as captured by our ex-ante skewness measure by comparing the spread in empirical

option skewness across stock skewness terciles to that within stock skewness terciles.

Our method to forecast stock return skewness closely follows Boyer, Mitton, and Vorkink (2010),

who demonstrate the method’s ability to forecast stock return skewness. Let m denote the current

month, let S(m) denote the set of trading days within month m, and let N(m) denote the number of

days in this set. In addition, let vi,m and si,m denote historical estimates of volatility and skewness

3As discussed in the paper, empirically estimating skewness from the time series of option returns is challenging,
especially for out-of-the-money options, since small probability events are often not observed within a short period of
time. We therefore choose to follow Zhang (2005) and empirically estimate skewness in the cross section. Since there
are many more options than time periods, it is easier to capture small probability events in the cross section.
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(respectively) for stock i using daily data for all days in S(m). We can then define vi,m and si,m in

the usual manner as

vi,m =

(
1

N(m)−1 ∑
d∈S(m)

(r̃i,d − µ̃i,d)
2

)1/2

, (IA.1)

si,m =
1

N(m)−2
∑d∈S(m)(r̃i,d − µ̃i,d)3

v3/2
i,m

, (IA.2)

where r̃i,d is the return for stock i over day d, and µ̃i,d denotes an estimate of the expected stock

return. We need measures of expected skewness for stock i at the end of month m, Em[si,m+1], rather

than measures of historical skewness as defined in equation (IA.2). These estimates of expected

skewness should be feasible in that they use information available to investors at the end of month

m. To model investor perceptions of expected skewness in a feasible manner, we first estimate

cross-sectional regressions separately at the end of each month m in our sample,

si,m = β
m
0 +β

m
1 si,m−1 +β

m
2 vi,m−1 + γ

mXi,m−1 + εi,m, (IA.3)

where Xi,m−1 is a vector of additional firm-specific variables observable at the end of month m−1.

Superscripts on regression parameters are included to emphasize that we estimate these parameters

using information observable at the end of month m. Equation (IA.3) is similar to the panel esti-

mations conducted in Chen, Hong, and Stein (2001) with the exception that we estimate the model

each month. We then use the regression parameters from equation (IA.3), along with information

observable at the end of each month m, to estimate expected skewness for each firm,

Em[si,m+1] = β
m
0 +β

m
1 si,m +β

m
2 vi,m + γ

mXi,m. (IA.4)

This approach not only allows the relation between firm-specific variables and skewness to vary over

time, but also provides feasible estimates of expected skewness each month.

The firm-specific variables used to define Xi,m−1 are

Momentum (momi,t−T ) : the cumulative return for firm i from the end of month t−T −12 through

the end of month t−T −1.
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Turnover (turni,t−T ) : the sum of daily turnover for firm i over month t−T . Daily turnover for day

d is defined as volume for day d divided by shares outstanding reported on day d.

Nasdaq (Nasdi,t−T ) : dummy variable indicating firms listed on NASDAQ (CRSP exchange code

= 3 for month t−T ).

Small (Smalli,t−T ) : dummy variable indicating firms in the bottom tercile ranked by size at the end

of month t−T .

Medium (Medi,t−T :) dummy variable indicating firms in the middle tercile ranked by size at the

end of month t−T .

Industry Dummies: dummies for 16 of the 17 industries defined by Ken French to create the “17

Industry Portfolios” on his website.

On each option portfolio formation date we first separate options by maturity as in the paper.

Here we focus on seven- and 18-day options for brevity. As in the paper, the portfolio formation

dates for the seven-day options fall on the second Friday of each month and for the 18-day options

are the first trading day of each month. We then sort underlying assets with a given maturity into

terciles based on Em−1[si,m], where m denotes the month in which the option portfolios are created

and expire. On each portfolio formation date we then sort options with the same expiration date and

stock skewness tercile into option skewness terciles, based on the lognormal assumption as described

in the paper. In Table IA.III we report the average cross-sectional skewness of options within each

bin.

Table IA.III indicates that call option skewness increases with the skewness of the underlying.

This can be seen in Panel A, by noting that nearly all of the numbers in columns marked “Low-High”

are negative. Put option skewness decreases with the skewness of the underlying. This can be seen in

Panel B, by noting that all of the numbers in columns marked “Low-High” are positive. While these

results are intuitive, only a few of them are statistically significant. Further, differences in option

skewness across stock skewness bins (across the columns of Table IA.III) are quite small relative

to differences in option skewness within stock skewness bins (down the rows of Table IA.III). The

results of this table therefore suggest that other option characteristics as captured by our ex-ante

skewness measure under the lognormal assumption are much more important than stock skewness

for explaining variation in option skewness.
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In Table IA.IV we report the CAPM alphas of the option portfolios defined for Table IA.III. Call

alphas generally decrease with stock skewness: in Panel A of Table IA.IV nearly all of the numbers

in columns marked “Low-High” are positive. Put alphas generally increase with stock skewness: in

Panel B of this same table nearly all of the numbers in columns labeled “Low-High” are negative.

These results suggest that option skewness arising from greater skewness of the underlying is also

priced. However, similar to Table IA.III, differences across stock skewness bins (across the columns

of Table IA.IV) are small relative to differences within stock skewness bins (down the rows of Table

IA.IV).

Given the evidence of Tables IA.III and IA.IV, it appears that stock skewness is not of first-

order importance for explaining variation in option skewness and that accounting for stock return

skewness would, if anything, further strengthen our results. In light of these findings, the lognormal

assumption appears to be conservative.

IV. Single Factor Regressions

In this section we begin by reporting the regression slopes (betas) associated with the regression

intercepts (CAPM alphas) reported in Table V of the paper. We then report alternative estimates of

regression intercepts (CAPM alpha) for the ex-ante skewness quintile portfolios analyzed in Tables

II to VII of the paper.

A. Betas

Table IA.V reports the betas associated with the CAPM alphas reported in Table V of the paper.

Here we see that betas for call portfolios are all positive and for put portfolios are all negative. Coval

and Shumway (2001) show that option betas increase with the strike price holding all else fixed,

including the underlying asset, for both calls and puts. Figure 1 and Section (II) above indicate

that calls with high ex-ante skewness generally have high strike prices and puts with high ex-ante

skew generally have low strike prices. In Table IA.V we see that betas increase with the strike

price for puts, but not for calls. The reason is that the underlying asset is not held constant in Table

IA.V across ex-ante skewness quintiles, but rather, is determined by the trading choices of market

participants over the data sample and by our data screens discussed in the paper.
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B. Unconditional Sorts

In this section we report CAPM alphas for portfolios of options unconditionally sorted by mon-

eyness and then by ex-ante coskewness as defined in the Appendix in the published paper. The

procedure we follow is identical to that of Table II of the paper with the exception that in Table

II we unconditionally sort by ex-ante skewness. In Table IA.VI we report results after uncondi-

tionally sorting by moneyness. Here we see that the spread in alpha across portfolios with a given

maturity are similar to those reported in Table V. For example, among call options that expire in

seven days, the alpha spread across the high and low ex-ante skewness quintiles reported in Table

V is 38.95% per week while the corresponding alpha spread for call options sorted by moneyness

in Table IA.VI is 38.06% per week. In Table IA.VII we report results after unconditionally sorting

by ex-ante coskewness, where we see that alpha spreads are insignificantly different from zero. For

example, among call options that expire in seven days, the alpha spread across the high and low

ex-ante skewness portfolios is -2.28 with a t−statistic of -0.44.

We argue in this paper that the large alpha spreads documented in Table IA.VI arise because

moneyness is strongly related to total option skewness. In fact, after controlling for moneyness,

we still find a significant relationship between ex-ante skewness and CAPM alphas (see Table IX

of the paper). After controlling for ex-ante skewness, however, we find that the relation between

moneyness and CAPM alpha documented in Table IA.VI largely disappears. On the other hand,

Table IA.VII provides little evidence that systematic coskewness is priced in options on individual

stocks.

C. Instantaneous Betas

In Table IA.VIII we present CAPM alpha estimates using each portfolio’s instantaneous beta.

On each portfolio formation date, t, we first calculate the instantaneous beta of each option in the

portfolio,

β
i
t = ∆t

St

Ct
β

mkt
S,t , (IA.5)

where ∆t is the option’s delta, St is the underlying stock price, Ct is the underlying call (or put)

price, and βmkt
S,t is the underlying stock’s beta with respect to the market, estimated using six months

of daily data prior to the portfolio formation date. On each portfolio formation date, t, we estimate
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the portfolio instantaneous beta, βi
p,t , as an equally weighted average of all the instantaneous betas

of options within the portfolio. The instantaneous beta may especially be an appropriate measure

for portfolios with short maturities. We use deltas provided in the Ivy Optionmetrics database that

are constructed using the Cox, Ross, and Rubinstein (1979) binomial tree for American options. We

then calculate the CAPM alpha for each portfolio as

α
i
p =

1
N ∑

t

[
rp,t:T − r f ,t:T −β

i
p,t(rm,t:T − r f ,t:T )

]
, (IA.6)

where N corresponds to the number of portfolio formation dates in the data. Standard errors for the

average CAPM alpha estimates are constructed using the method of Newey-West (1987). We report

alphas as given in equation (IA.6) in Table IA.VIII and find them to be similar to the regression

CAPM alphas given in Table V of the paper. For example, among options that expire in seven days,

the CAPM alpha spread for call (put) options is 45.43% (47.54%) in Table IA.VIII and 38.95%

(53.27%) in Table V of the paper.

D. Estimation Window for Stock Moments

Our measure of ex-ante expected skewness depends on estimates of the first two moments for

the underlying stock. In the paper we use a six-month window of daily data to estimate these

moments. Here we estimate these moments using a five-year window and use them to measure

ex-ante skewness. CAPM alphas for portfolios sorted according to this alternate measure of ex-ante

skewness are given in Table IA.IX. The only difference between Tables V and IA.IX is that for Table

V, we use a six-month window to estimate stock moments while for Table IA.IX we use a five-year

window. The results reported in these two tables are very similar, implying that the window length

we use to estimate stock moments does not have a meaningful impact on our results.

While volatility is persistent and may be reasonably estimated using historical data, estimates of

the expected return using historical data can be noisy (Merton (1980)). Figure IA.1 shows how our

expected skewness measure varies with the expected stock return. This figure is a plot of expected

skewness for theoretical options that expire in 21 days on an asset with annualized volatility of 0.4

and varying levels of moneyness and expected return. Consistent with Figure 1 of the paper, Figure

IA.1 shows that option skewness is higher for out-of-the-money options. However, skewness does
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not seem to vary much with the expected stock return. Hence, even though our measure of the

expected stock return is undoubtedly noisy, this noise does not seem to have much impact on our

estimate of ex-ante expected skewness.

E. Early Exercise

Results of the paper use hold-to-expiration returns that ignore the possibility of early exercise.

Here we report CAPM alphas for option portfolios sorted on ex-ante skewness, where we use a

simple rule to account for the possibility of early exercise. We identify the first day, τ, after the

portfolio formation date for each call (put) option contract on which bidτ < Sτ−X (bidτ < X −Sτ),

where bidτ is the closing bid price for the option, Sτ is the closing price for the underlying stock, and

X is the strike price. Such boundary conditions represent the first possible opportunity for which it

may be optimal to exercise early.4 If we find a day for which these boundary conditions are satisfied,

we “exercise” the option and put the proceeds in an account that earns the risk-free rate through the

maturity date of the contract. We then calculate call and put net returns, rc and rp, as

rc =
Sτ−X

Ct
exp
[

r f (T − τ)
250

]
−1 (IA.7)

rp =
X −Sτ

Pt
exp
[

r f (T − τ)
250

]
−1,

where Ct and Pt represent option prices on portfolio formation date t, and r f represents the annual-

ized risk-free rate. If no such date τ is found, then returns are calculated assuming the option is held

to expiration.

We report results that account for early exercise in this manner in Table IA.X. Here we see that

the results are quite similar to those that do not account for the possibility of early exercise reported

in Table V of the paper. For example, among calls (puts) that will expire in seven days, the CAPM

alpha spread across the low and high ex-ante skewness quintiles is 39.04% (53.19%) in Table IA.X

and 38.95% (53.27%) in Table V of the paper. The results suggest that accounting for early exercise

has little impact on our results.

4Pool, Stoll, and Whaley (2007) use a similar “market-based approach” to determine optimal timing of early exercise.
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F. Alternate Skewness Measure

We sort options by the third raw moment and in Table IA.XI report CAPM alphas for these port-

folios. Again we see that little has changed relative to our previous results. The results of Table

IA.XI suggest that variation in the numerator of our expected skewness measure (the option’s third

moment) is much more important for variation in expected skewness than variation in the denomi-

nator (the option’s volatility).

V. Stock Alphas Controlling for Momentum

While we report significant CAPM alpha spreads for our ex-ante skewness portfolios in Table V,

we also find that for options at longer maturities, CAPM alpha spreads for the underlying stocks are

also significantly different from zero in Panel B of Table V of the paper. This raises the possibility

that the reason we find significant spreads in CAPM alpha for options across the low and high ex-ante

skewness quintiles is because the stocks underlying these options are somehow different in terms of

some risk exposure or characteristic. We resolve this question in the paper by creating portfolios of

options in the low and high ex-ante skewness bins on the same underlying assets, thus eliminating

any differences in the characteristics of the underlying across these two ex-ante skewness quintiles.

We still find significant CAPM alpha spreads across the low and high ex-ante skewness quintiles

after holding the underlying assets fixed as reported in Table VI.

In this section we further investigate the reason behind the nonzero CAPM alpha spreads for

stocks reported in Panel B of Table V of the paper. In particular, in Table IA.XII we report CAPM

alphas of the underlying stocks for the option portfolios analyzed in Tables II to VII after controlling

for the lagged six-month return. On each portfolio formation date we first sort the underlying stocks

for options of a given maturity into deciles based on the six-month return just prior to the portfolio

formation date. Then within each decile, we rank stocks into two bins based on the ex-ante skewness

of the options written on them. We then equal-weight the returns for stocks with the same ex-ante

skewness rank across all deciles. After creating two such portfolios for each formation date in our

sample, we then estimate and compare the stock alphas.
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In Table IA.XII we see that virtually all CAPM alphas are insignificant from zero, indicating

that the reason many of the stock CAPM alphas in Table V of the paper are nonzero for options

with 48 days to maturity is because of a momentum effect. In Table V of the paper we observe that

at these longer maturities, it is primarily stocks for out-of-the money calls (high exercise relative to

underlying) that have negative alphas, or stocks that have recently fallen in value. Similarly, it is

primarily stocks for in-the-money puts (again, high exercise relative to underlying) that have negative

alphas as well. Stocks whose prices have gone down recently will end up with out-of-the-money

call options (high ex-ante skewness) and in-the-money put options. Given the momentum effect,

these will likely experience continued negative performance in the future. Once we control for this

effect as in Table IA.XII, the signficance of the stock alphas goes away.

We conduct a similar analysis where we examine the alphas of option portfolios after controlling

for the lagged six-month return of the underlying asset in Panel E of Table IA.XIII. Here we see

that CAPM alpha spreads across the low and high skewness option portfolios are still significantly

different from zero. Hence, while momentum effects explain the nonzero alphas for underlying

assets reported in Panel B of Table V of the paper, they do not seem capable of explaining the

nonzero CAPM alphas of the option portfolios documented in Panel A of Table V of the paper.

VI. Double Sorts

In this section we conduct additional robustness checks to individually control for the potential

influence of various stock and option characteristics on option returns, including each input to our

measure of expected skewness, and show that our main results still hold. Our measure of expected

skewness is a function of six variates: stock price, time to maturity, moneyness, expected stock

return, stock return volatility, and option price. Motivated by the fact that others have investigated

the relationship between moneyness and option returns (Coval and Shumway (2001) and Ni (2009)),

we report tests that control for moneyness in the paper. (See Table IX.) In addition, because all

quantitative comparisons in our paper are made across options with exactly the same maturity, we

already perfectly control for maturity effects. We therefore conduct tests to control for variation in

the stock price, expected stock return, stock return volatility, and option price. We also conduct this

exercise for each of the characteristics considered in our Fama-McBeth (1973) regressions, namely,
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volume, bid-ask spread, and volatility smirk, as well as the past six-month underlying stock return

and option vega.

On each portfolio formation date we first sort options of a given maturity into deciles based on

some characteristic. Then within each characteristic-sorted decile, we rank options into two ex-

ante skewness bins. We then equal-weight the returns for options with the same ex-ante skewness

rank across all characteristic deciles, thereby creating two portfolios similar in terms of the given

characteristic but different in terms of their ex-ante skewness. After creating two such portfolios for

each formation date in our sample, we then estimate and compare their CAPM alphas.

Table IA.XIII reports the results. Here we see that the negative relation between option skewness

and CAPM alpha still exists even after controlling for variation in these other variables. The smallest

alpha spread between the conditionally sorted low and high skewness portfolios is 12.50 with a

t-statistic of 5.39, found for puts in Panel I where we control for variation in the option price.

Since option price and moneyness are highly correlated, controlling for price gives similar results to

controlling for moneyness.

VII. Simulation Study

In this section we investigate whether more robust models of stock return dynamics can generate

the patterns in individual stock options we observe in the data. Broadie, Chernov, and Johannes

(2009) discuss some of the concerns regarding the empirical analysis of option returns and allege

that standard methods to compute pricing errors for options can be misleading. Some of these

problems arise because option returns are nonnormal, nonlinear, non-additive and may suffer from

peso problems in finite samples. First, option returns deviate substantially from normality and the

small-sample distributions of standard CAPM alpha estimates may not conform with asymptotic

inference. Second, the nonlinear relation between option and stock returns is likely to cause et

in the regression given by equation (5) in the paper to be correlated with rm,t:T , thereby causing

OLS estimates of alpha to be biased and inconsistent. Third, because returns are non-additive,

expectations and betas do not scale linearly with time.5 This implies, for example, that if stock prices

5While log-returns are additive and are a satisfactory approximation for simple stock returns, they may not be a
satisfactory approximation for the returns of options held to maturity as noted by Coval and Shumway (2001). The
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follow geometric brownian motion and Merton’s (1971) continuous-time CAPM holds, then the

CAPM cannot hold over discrete horizons. Estimates of alpha may therefore be unduly influenced

by the particular horizon over which we choose to measure returns. Finally, finite samples of option

returns may lack important certain extreme rare events correctly anticipated by option investors

ex-ante, but not reflected in our estimates of alpha measured ex-post (peso problems).

To account for the nonnormality of option returns, we estimate bootstrapped p-values for our

CAPM alpha estimates. To do this, we create non-overlapping samples for options that expire in

seven, 18, and 48 days by forming portfolios every other month. We then sample portfolio returns in

the time series with replacement to create a new sample of the same size as the original and estimate

CAPM alphas using this new sample. We then repeat this procedure 10,000 times. In Panel A of

Table IA.IV we report the estimated CAPM alphas using the non-overlapping data sample, asymp-

totic t-statistics, and boot-strapped p-values for spreads in alpha for both the high and low skewness

portfolios along with their difference. We calculate p-values as the fraction of bootstrapped samples

for which the difference in alpha is less than zero. These p-values are consistent with the reported

t-statistics. Hence, our results remain after accounting for the nonnormality of option returns.

To deal with other empirical difficulties associated with option returns we compare estimated

pricing errors to those generated by a formal option pricing model, as in Broadie, Chernov, and

Johannes (2009). In so doing, we anchor hypothesis tests at more appropriate null values, deal with

the statistical problems associated with option returns, and also develop a framework to address

the issue of peso problems. We simulate a Black-Scholes (1973) world in which Merton’s (1971)

continuous-time CAPM holds and calibrate the simulation to match the ex-ante moments and size of

our sample of non-overlapping option returns created for the bootstrap exercise above. In particular,

we use annualized estimated stock return volatilities and betas using six months of daily data prior

to the portfolio formation dates as our instantaneous second moments and assume that instantaneous

expected stock returns are given by the CAPM with an annualized risk premium of five percent. We

price options using the Black-Scholes (1973) model and estimate CAPM alphas for option returns

over discrete horizons exactly as we do for our results in Table V. We repeat the exercise 1,000 times.

log-return of any option expiring worthless is negative infinity, and all moments for the log-return of any option are
either positive or negative infinity.
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The objective of our simulation is to determine how often, in a world in which preference for

skewness has no impact on prices, we can generate results as extreme as those reported in Panel A.

Although true instantaneous alphas are zero by construction, the estimated alphas will be nonzero for

two reasons. First, the estimated alphas are somewhat biased given the nonlinear relation between

simulated option and market returns. Second, the CAPM holds instantaneously in the simulated data

while we estimate alphas over discrete horizons. Finally, the simulation also allows us to investigate

how often we might expect to observe samples with peso problems that can generate results as

extreme as those of Table V.

The results of this simulation are given in Panel B of Table IA.IV where for brevity we only

report the high and low skewness portfolios along with their difference. Rows marked “p-value” in

Panel B report the fraction of simulated samples that provide spreads in alpha at least as extreme

as those found in Panel A. All are virtually zero. The only exception is for puts with 48 days

to expiration. Hence, nonlinearity, non-additivity, and peso problems do not appear adequate to

explain our results.

A. Jump-Diffusion Model

We next replicate the entire data set of option returns under a model that can generate more

flexible distributions in returns than the lognormal assumption. In this case, we adopt the Merton

(1976) jump diffusion model for a couple of reasons. First, we want to investigate a model where

idiosyncratic unpriced jumps were present, not jumps in the market return that are then translated

into stock returns through systematic pricing. Second, because we study the full cross section of

options, we need a model that is relatively tractable and that can be applied to a variety of options

across a large cross-section of underlyings at each point in time. This constraint proves to be

nontrivial; at certain points in time in the option return data we have more than 1,000 underlying

stocks on the options in a single maturity bin, but across all skewness bins and for both calls and

puts. We acknowledge that more general models of stock returns are available and able to generate

more general return distributions than the Merton (1976) model. That said, we believe that this

model allows us to investigate the robustness of our results to the assumption that price changes

follow a continuous lognormal distribution.
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In his option pricing model, Merton (1976) generates an option pricing formula for the case in

which stock returns are driven by both continuous and jump components as shown below,

dS/S = (µ−λk)dt +σdZ +dq, (IA.8)

where µ is the instantaneous stock return, σ is the standard deviation of stock returns conditional on

no jump arrivals, λ is the jump intensity parameter specified as the mean arrival per unit of time,

k is the expected value of the jump realization, dZ is a Weiner process, and q(t) is a jump process

assumed to be independent of dZ. Following Merton (1976), equation (IA.8) can be written as

dS/S =(µ−λK)dt +σdZ if the Poisson event does not occur

dS/S =(µ−λK)dt +σdZ +(Y −1) if the Poisson event occurs,

where Y is a random variable denoting the jump. One particular case considered by Merton (1976)

assumes that Y follows a lognormal distribution; in our simulation study we adopt this assumption as

well. In particular, we assume log(Yi) ∼ N(γ,δ2), where γ = log(1 + k). Under these assumptions

the stock return is shown as

S (t)/S = exp
[(

µ− σ2

2
−λk

)
t +σZ (t)

]
Y (n) , (IA.9)

where Y (n) =
n
∏
i=1

Yi, and n is a Poisson-distributed variable with parameter λt governing the arrival

process of the jumps. In this case, the returns of the stock will be lognormally distributed given

that both the continuous part of stock movements, σZ (t), as well as the jump process, Y (n), are

both lognormally distributed. This approach makes feasible the exercise of simulating a large

cross-section of stock returns on each date. While the nature of the stock return distribution does

not change relative to Black-Scholes (1973) (stock returns are still lognormal), we do allow the

volatility to increase relative to the Black-Scholes (1973) case and for the mass of the distribution

15



to move away from the center of the distribution. Under these assumptions the price of an option,

F(S, t) on stock S with maturity date, τ, is defined as

F (S,τ) =
∞

∑
n=0

e−λ̂τ

(
λ̂τ

)n

n!
BSn (S,τ) , (IA.10)

where λ̂ = λ(1+ k), BSn represents the Black-Scholes (1973) option formula, only in this case the

risk-free rate, r, is replaced with r−λk + nγ/τ, and the stock return variance, σ2, is replaced with

σ2 + nδ2/τ. Consequently, option prices can be solved for analytically by approximation of the

infinite sum in equation (IA.10).

B. Simulation exercise

To investigate the role that jumps may have in explaining option returns in our base results, we

conduct a simulation exercise under the distribution assumptions described above. To simulate

stock returns under the jump process, we require values for the parameters in the jump process,

namely λ,k,and δ2. To help select values for these parameters, we turn to Ball and Torous (1985)

who investigate the fit of the Merton (1976) model using options trading on a set of 30 NYSE-listed

stocks. They report estimated values for these parameters on the 30 stocks, which provides a set

of values that we use in simulating the Merton model over our set of options. We adopt two main

approaches in drawing parameter values from the Ball and Torous (1985) paper. Our first approach

is to use the mean value of each of these three parameters over the estimated values. In Ball and

Torous (1985) each parameter value is estimated twice, providing a sample of 60 estimates for each

parameter. This approach is intended to represent the likely values of the jump process parameters

for the stock in our sample. We apply the same jump process parameter values across all stocks

in our data given our study analyzes the full cross section of options (and related underlyings).

Our second approach is to take the maximum estimated values as a representation of extreme jump

process parameters estimated in Ball and Torous (1985).6

6We have one exception to the maximal values approach. In one case, the value of the jump intensity parameter, λ, is
estimated to be 1,138 with the next largest value 22 and a mean value of just under 2. In this case we take the maximal
value to be the second largest value, 22, and ignore the true maximum. We ran the simulation with the true maximal
value for λ and found these values did not resolve the low returns in high-skewed options. In fact, this paramterization

16



For the other parameters, we follow our Black-Scholes (1973) simulation discussed above and

use annualized estimated stock return volatilities and betas using six months of daily data prior to

the portfolio formation dates as our instantaneous second moments and assume that instantaneous

expected stock returns are given by the CAPM with an annualized risk premium of five percent. In

this case, on each day, we price options using the Merton (1976) model in equation (IA.10) using

the existing option characteristics and the jump parameter values as discussed above. To construct

holding period returns we need to simulate stock returns, which are constructed using equation

(IA.9). We maintain a similar market return component across all options within a given maturity

bin and also maintain a common stock return across all stocks within a given maturity bin. As

before, we simulate stock returns that are then used to construct holding period option returns. We

next construct portfolio returns of the options and estimate the CAPM alphas of the portfolios using

a market model as in the Black-Scholes (1973) simulation case. We repeat the exercise 1,000 times

and calculate the average CAPM alpha spreads across the low and high ex-ante skewness portfolios.

The results of these simulations are reported in Panel C of Table IA.IV. We report the simulation

results of the Merton (1976) simulation under various sets of jump parameters. In the first set

of results of Panel C, titled “(1) - Mean Values,” we report results using the mean values of jump

parameters taken from Ball and Torous (1985). This simulation generates CAPM alpha spreads that

are closer to those we observe in the data, relative to the results of Panel B, but are still statistically

significantly different from those estimated in the data, with p-values for five of the six portfolios

smaller than 0.01. In the next three sets of results, we report the results of the simulation where the

maximum jump parameter values are used. In the second set of results, titled “(2) - Max Values,

Zero Mean Jumps,” we constrain the mean of the jump process to be zero, and in the third (fourth)

set of results we allow the mean jump process to be at its maximal positive (negative) value from

Ball and Torous (1985). In each of these sets of results where maximum jump values are used,

the alpha spreads are still statistically significantly different than those estimated in the data, with

p-values in all cases less than 0.01.

We again acknowledge that many other, even more general, models of stock price dynamics and

associated option prices exist and may help to explain the patterns observed in stock option returns.

led to large positive returns on highly skewed call and put options, making the observed patterns in returns look even
more anomalous.

17



The results reported in Table IA.IV, however, suggest that the accomodation of jumps, as in Merton

(1976), cannot reconcile the large negative returns on high ex-ante options as observed in the data.
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Table IA.I 
Open Interest 

This table reports additional summary statistics for the options that survive the data 
filter outlined in Section B of the Appendix in the published paper.  For Panel A we 
first measure, for each portfolio formation date, the average open interest across 
options for each portfolio and then report the time-series average of this measure. We 
define open interest as the number of contracts outstanding on the day prior to the 
portfolio formation date. For Panel B we first measure the total dollar open interest 
across options within each ex-ante skewness quntile on each portfolio formation date, 
and then report the time-series average of this measure. Total dollar open interest is the 
sum of closing  price open interest on the portfolio formation date across all options 
within each ex-ante skewness quintile. Each panel reports results separately for call and 
put options, as well as differences in each characteristic across the high and low 
skewness quintiles for each maturity. We also report Newey-West (1987) standard 
errors for these differences. 

 

Skew Quintile 7 18 48 7 18 48

Low 2400 2043 1436 2000 1838 1386

2 2715 2351 1387 2248 1952 1321
3 2885 2614 1492 2420 2211 1343
4 3347 2898 1657 2870 2500 1471

High 3937 3535 2264 3299 2809 1822

Low-High -1537 -1492 -828 -1299 -972 -436

(st. error) (84.44) (105.32) (94.01) (77.6) (93.8) (89.1)

Low 441.21 686.26 553.26 272.71 400.97 303.73

2 177.78 310.43 230.38 126.14 184.46 143.07
3 88.12 167.60 143.73 65.80 112.17 96.83
4 41.94 84.84 88.25 34.67 64.12 68.09

High 18.69 34.09 45.69 16.39 27.95 34.80

Low-High 422.52 652.16 507.56 256.32 373.02 268.93

(st. error) (13.27) (10.33) (7.49) 10.39 9.98 5.92

Panel A. Average Open Interest per Contract

Panel B. Average Total Dollar Open Interest (millions)

Call Options Put Options
Days to Expiration Days to Expiration
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Table IA.II 
Fama-MacBeth Regressions on Ex-Ante Skewness 

In this table we report the results of Fama MacBeth (1973) regressions on option portfolio ex-ante skewness using 
portfolios of individual equity options taken from the Ivy database over the period 1996 to 2009.  On each 
portfolio formation date for options that expire in seven days we independently rank options into 100 bins based 
on each input to our ex-ante skewness measure, and on the measure itself. We then estimate Fama Macbeth 
(1973) regressions using these ranks with the ex-ante skewness rank as the dependent variable.  Panel A reports 
the time-series average of estimated coefficents for call option portfolios while Panel B reports the analogous 
results for put option portfolios.  Each column represents a cross-sectional regression using a set of explanatory 
variables that are indicated in the first column.  These include moneyness (X/S), option price (price), stock 
volatility (σs), stock mean return (µs), stock price (S), and a moneyness-volatility interaction term (X/S x σs).  We 
include the interaction term whenever we control for volatility and moneyness because the effect of volatility on 
skewness depends on moneyness. (See Figure 2 of the paper.) We report t-statistics based on Newey West (1987) 
standard errors directly below coefficient averages.  In the final row of each table we report the average adjusted 
R2 for each of the Fama MacBeth (1973) regressions. 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

X/S0 0.957 0.712 1.377 0.951 0.953 1.183

(1324.76) (143.06) (375.01) (732.08) (925.41) (235.43)

price -0.910 -0.273 -0.157

-(433.15) -(53.91) -(40.01)

s
0.094 0.413 0.406

(15.52) (58.05) (57.38)

s
-0.166 -0.117 -0.121

-(26.33) -(49.86) -(79.26)

S0 -0.103 -0.045 0.052

-(13.80) -(18.68) (32.91)

(X/S0) 
s

-(0.01) -0.007

-(115.04) -(115.99)

Adj R
2

91.6% 82.8% 1.4% 3.3% 1.9% 93.1% 96.7% 93.0% 91.9% 98.3%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

X/S0 -0.965 -0.847 -1.306 -0.953 -0.954 -1.195

-(1191.01) -(132.95) -(312.60) -(696.69) -(708.13) -(274.00)

price -0.884 -0.133 -0.081

-(388.88) -(20.60) -(26.26)

s
-0.066 -0.389 -0.353

-(9.88) -(53.59) -(55.71)

s
0.213 0.115 0.122

(26.86) (41.07) (78.48)

S0 0.205 0.069 0.030

(25.84) (26.08) (23.04)

(X/S0) 
s

(0.01) 0.006

(74.90) (77.64)

Adj R
2

93.1% 78.1% 1.0% 5.4% 5.1% 93.6% 97.0% 94.5% 93.6% 98.4%

Panel A. Call Options

Panel B. Put Options
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Table IA.III 

Stock Skewness and Option Skewness 

This table reports the average cross-sectional skewness of portfolios of individual equity options taken from the 
Ivy database over the period 1996 to 2009.  On each option portfolio formation date we first filter out all options 
other than those with seven-day or 18-day maturities.  We then sort underlying assets with a given maturity into 
terciles based on ex-ante stock skewness as seen in equation (IA.4).  We next sort options with the same 
expiration date and stock skewness tercile into option skewness terciles, based on our ex-ante skewness measure.  
We report the time-series average of the cross-sectional skewness estimate for each maturity, stock skewness, and 
option skewness bin.  We report results for both call options (Panel A) and put options (Panel B).  The final two 
rows of each panel report differences in average skewness across the high and low skewness qunitiles along with 
Newey-West (1987) t-statistics that test whether these differences are equal to zero.  The final two columns of 
each call or put option group report differences in average option skewness across the high and low stock 
skewness terciles along with Newey-West (1987)  t-statistics that test whether these differences are equal to zero.  
Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. 

 

Skew
Quintile Low Medium High Low-High Low Medium High Low-High

Low 1.00 *** 1.05 *** 1.12 *** -0.13 1.14 *** 1.30 *** 1.57 *** -0.44 ***

Medium 2.78 *** 2.84 *** 3.15 *** -0.37 ** 3.01 *** 3.28 *** 3.62 *** -0.61 ***

High 6.43 *** 6.27 *** 6.25 *** 0.18 6.86 *** 6.53 *** 6.76 *** 0.03

Low-High -5.45 *** -5.23 *** -5.14 *** -5.74 *** -5.27 *** -5.23 ***

(t-stat)

Skew
Quintile Low Medium High Low-High Low Medium High Low-High

Low 1.25 *** 1.17 *** 1.12 *** 0.13 1.50 *** 1.54 *** 1.38 *** 0.12

Medium 3.45 *** 3.27 *** 3.20 *** 0.26 3.69 *** 3.78 *** 3.31 *** 0.39 **

High 6.94 *** 6.89 *** 6.64 *** 0.34 7.15 *** 7.14 *** 6.73 *** 0.45 *

Low-High -5.72 *** -5.75 *** -5.56 *** -5.63 *** -5.59 *** -5.33 ***

(t-stat) -(20.47) -(20.79)-(25.76) -(28.05) -(26.14) -(22.75)

(1.35)

(1.36) (2.24)

(1.44) (1.69)

7 Days to Expiration 18 Days to Expiration
Expected Stock Skewness Expected Stock Skewness

(1.02)

Panel B. Put Options

(0.79) (0.10)

-(22.84) -(23.91) -(23.88) -(22.33) -(23.35) -(20.27)

Expected Stock Skewness Expected Stock Skewness

-(1.55) -(4.81)

-(2.46) -(3.95)

Panel A. Call Options
7 Days to Expiration 18 Days to Expiration
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Table IA.IV 
Stock Skewness and CAPM Pricing Errors 

This table reports regression CAPM pricing errors for portfolios of individual equity options taken from the Ivy 
database over the period 1996 to 2009.  On each option portfolio formation date we first filter out all options other 
than those with seven-day or 18-day maturities.  We then sort underlying assets with a given maturity into terciles 
based on ex-ante stock skewness as seen in equation (IA.4).  We next sort options with the same expiration date 
and stock skewness tercile into option skewness terciles, based on our ex-ante skewness measure.  We report 
results for both call options (Panel A) and put options (Panel B).  We report CAPM pricing errors for the option 
portfolios obtained by regressing option portfolio returns on excess market returns as in equation (5). The final 
two rows of each panel report differences in CAPM pricing errors across the high and low skewness qunitiles 
along with Newey-West (1987)  t-statistics that test whether these differences are equal to zero.  The final two 
columns of each call or put option group report differences in CAPM pricing errors across the high and low stock 
skewness terciles along with Newey-West (1987)  t-statistics that test whether these differences are equal to zero.  
Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. 
 

Skew
Quintile Low Medium High Low-High Low Medium High Low-High

Low 0.77 -2.26 * -4.42 *** 5.19 *** 0.35 -0.08 -0.36 0.71
Medium -0.03 -7.74 ** -13.39 *** 13.35 *** 0.86 0.84 -0.10 0.96

High -23.06 *** -30.40 *** -35.59 *** 12.53 ** -5.89 ** -5.29 ** -6.63 ** 0.74

Low-High 23.83 *** 28.15 *** 31.17 *** 6.25 *** 5.21 ** 6.27 ***

(t-stat)

Skew
Quintile Low Medium High Low-High Low Medium High Low-High

Low -4.91 *** -3.15 ** -0.61 -4.30 ** -2.06 *** -0.91 0.48 -2.54 ***

Medium -12.69 *** -8.63 *** -9.59 *** -3.10 -2.67 -2.40 * -0.40 -2.27
High -39.93 *** -49.73 *** -49.33 *** 9.40 -10.22 *** -11.05 *** -9.37 *** -0.85

Low-High 35.01 *** 46.58 *** 48.72 *** 8.16 *** 10.14 *** 9.85 ***

(t-stat) (4.06) (3.93)(5.57) (11.14) (11.03) (2.61)

Panel B. Put Options
7 Days to Expiration 18 Days to Expiration

Expected Stock Skewness Expected Stock Skewness

Expected Stock Skewness Expected Stock Skewness

(4.66) (5.92) (9.24) (2.88) (2.25) (3.08)

Panel A. Call Options
7 Days to Expiration 18 Days to Expiration
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Table IA.V 
Option Betas 

This table reports regression betas for portfolios of individual equity options taken from the Ivy 
database over the period 1996 to 2009.  Option portfolios are formed by sorting on ex-ante skewness 
as in equations (1) to (4) and returns are holding period returns to expiration as in equation (3), using 
the midpoint of the bid and ask prices as the proxy for price. We report regression betas for both call 
options (first set of columns) and put options (last set of columns).  In the final two rows we report 
differences in betas across the high and low skewness quintiles along with GMM t-statistics 
calculated using the approach of Newey and West (1987). Statistical significance at the 10%, 5%, and 
1% level is indicated by *, **, and ***, respectively. 

 

Skew
Quintile

Low 15.96 *** 11.45 *** 8.10 *** -9.99 *** -7.56 *** -6.39 ***

2 22.17 *** 13.65 *** 9.01 *** -16.54 *** -12.42 *** -9.32 ***

3 19.98 *** 12.17 *** 8.77 *** -20.73 *** -16.07 *** -11.17 ***

4 15.55 *** 9.95 *** 7.56 *** -20.62 *** -19.76 *** -12.85 ***

High 9.89 *** 6.78 *** 5.56 *** -14.40 *** -18.35 *** -15.59 ***

Low-High 6.07 ** 4.67 *** 2.54 *** 4.41 ** 10.79 *** 9.20 **

(t-stat)

Call Options
Days to Expiration

7 18 48

Put Options
Days to Expiration

(2.18) (2.84) (2.60)

18 48

(2.03) (2.86) (1.96)

7
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Table IA.VI 
Unconditional Sort on Moneyness 

This table reports CAPM pricing errors for portfolios of individual equity options taken from the 
Ivy database over the period 1996 to 2009.  Option portfolios are formed by sorting on 
moneyness and returns are holding-period returns to expiration as in equation (3), using the 
midpoint of the bid and ask prices as the proxy for price. We report results for both call options 
(first set of columns) and put options (last set of columns).  We report CAPM pricing errors for 
the option portfolios obtained by regressing option portfolio returns on excess market returns as 
in equation (5).  In the final two rows we report differences in CAPM pricing errors across the 
high and low moneyness quintiles along with GMM t-statistics calculated using the approach of 
Newey and West (1987). Statistical significance at the 10%, 5%, and 1% level is indicated, by *, 
**, and ***, respectively. 

 

k/S0

Quintile
Low -2.42 ** -0.37 -0.03 -52.42 *** -11.32 *** -0.79

2 -3.40 ** 0.03 0.09 -26.33 *** -4.51 ** -0.56
3 -5.03 * 0.70 0.01 -11.82 *** -2.50 ** -0.70
4 -11.11 ** -0.36 -0.14 -4.12 ** -1.90 *** -0.59 *

High -40.48 *** -7.82 *** -2.64 *** -1.81 -0.69 -0.01

Low-High 38.06 *** 7.44 *** 2.61 *** -50.61 *** -10.63 *** -0.78
(t-stat) (9.00) (2.94) (3.78) -(12.70) -(3.95) -(0.49)

Days to Expiration

7 18 48

Days to Expiration

7 18 48

Call Options Put Options
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Table IA.VII 
Unconditional Sort on Ex-Ante Coskewness 

This table reports regression CAPM pricing errors for portfolios of individual equity options 
taken from the Ivy database over the period 1996 to 2009.  Option portfolios are formed by 
sorting on ex-ante coskewness as described in Section A.2 of the paper’s Appendix and returns 
are holding-period returns to expiration as in equation (3), using the midpoint of the bid and ask 
prices as the proxy for price. We report results for both call options (first set of columns) and put 
options (last set of columns).  We report CAPM pricing errors for the option portfolios obtained 
by regressing option portfolio returns on excess market returns as in equation (5).  In the final 
two rows we report differences in CAPM pricing errors across the high and low coskewness 
quintiles along with GMM t-statistics calculated using the approach of Newey and West (1987). 
Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. 

 

Coskew
Quintile

Low -10.81 *** -3.39 *** -1.16 *** -18.54 *** -6.23 *** -0.69
2 -13.14 *** -1.93 * -0.60 -19.02 *** -3.67 *** -0.31
3 -15.38 *** -2.09 -0.38 -19.33 *** -3.61 *** -0.04
4 -14.51 *** -0.61 -0.19 -18.91 *** -2.41 -0.44

High -8.52 0.24 -0.37 -20.69 *** -4.98 ** -1.18

Low-High -2.28 -3.63 -0.79 2.15 -1.25 0.49
(t-stat) -(0.44) -(1.50) -(0.98) (0.47) -(0.62) (0.50)

Put Options
Days to Expiration

7 18 48

Call Options
Days to Expiration

7 18 48
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Table IA.VIII 
CAPM Pricing Errors using Instantaneous Betas 

This table reports CAPM pricing errors for portfolios of individual equity options taken from 
the Ivy database over the period 1996 to 2009.  Option  portfolios are formed by sorting on 
skewness as in equations (1) to (4) and returns are holding-period returns to expiration as in 
equation (3), using the midpoint of the bid and ask prices as the proxy for price.  In this table, 
we report CAPM pricing errors constructed using the instantaneous beta at the time the option 
is purchased as described in equation (IA.6) of the Internet Appendix.  In the final two rows we 
report differences in CAPM pricing errors across the high and low skewness quintiles along 
with GMM t-statistics calculated using the approach of Newey and West (1987). Statistical 
significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. 

 

Skew
Quintile

Low -2.27 *** -0.37 0.06 -1.56 ** -0.27 0.39
2 -5.83 *** 0.07 0.03 -1.99 0.30 0.35
3 -10.47 *** -0.14 -0.05 -6.29 ** -0.71 -0.10
4 -15.90 *** -0.61 -0.98 -20.73 *** -2.84 -0.67

High -47.79 *** -9.81 *** -3.50 *** -49.10 *** -11.75 *** -1.89

Low-High 45.53 *** 9.44 *** 3.56 *** 47.54 *** 11.47 *** 2.28
(t-stat) (10.30) (3.90) (1.54)

Call Options

(7.89) (3.70) (4.35)

7 18 48
Days to Expiration

7 18 48

Put Options
Days to Expiration
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Table IA.IX 
CAPM Pricing Errors  

Using Five-yearear Window to Estimate Stock Moments 

This table reports regression CAPM pricing errors for portfolios of individual equity options 
taken from the Ivy database over the period 1996 – 2009.  Option portfolios are formed by sorting 
on skewness as in equations (1) to (4) and returns are holding-period returns to expiration as in 
equation (3), using the midpoint of the bid and ask prices as the proxy for price.  In this table we 
report results where we use five-year windows of data to estimate inputs into the ex-ante 
skewness measure.  We report results for both call options (first set of columns) and put options 
(last set of columns).  We report CAPM pricing errors for the option portfolios obtained by 
regressing option portfolio returns on excess market returns as in equation (5).  In the final two 
rows we report differences in CAPM pricing errors across the high and low skewness quintiles 
along with GMM t-statistics calculated using the approach of Newey and West (1987). Statistical 
significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. 

 

Skew
Quintile

Low -1.33 -0.27 0.15 -2.73 *** -0.80 * 0.07
2 -3.45 * 0.28 0.31 -3.52 ** -1.39 * -0.23
3 -6.75 ** 0.94 0.24 -11.27 *** -1.99 -0.41
4 -10.94 ** 1.22 0.11 -22.86 *** -3.56 * -0.34

High -39.89 *** -9.96 *** -3.52 *** -56.07 *** -13.10 *** -1.74

Low-High 38.56 *** 9.69 *** 3.68 *** 53.34 *** 12.30 *** 1.81
(t-stat) (8.89) (4.36) (6.05) (13.56) (4.39) (1.06)

487 18 48 7 18

Call Options
Days to Expiration

Call Options
Days to Expiration
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Table IA.X 
CAPM Pricing Errors assuming Optimal Early Exercise 

This table reports CAPM pricing errors for portfolios of individual equity options taken from the 
Ivy database over the period 1996 to 2009.  Option portfolios are formed by sorting on skewness 
as in equations (1) to (4) and returns are holding period returns that account for early exercise as 
noted in equation (IA.7).  We use the midpoint of the bid and ask prices as the proxy for price.    
We report results for both call options (first set of columns) and put options (last set of columns).  
We report CAPM pricing errors for the option portfolios obtained by regressing option portfolio 
returns on excess market returns as in equation (5).  In the final two rows we report differences in 
CAPM pricing errors across the high and low skewness quintiles along with GMM t-statistics 
calculated using the approach of Newey and West (1987). Statistical significance at the 10%, 5%, 
and 1% level is indicated by *, **, and ***, respectively. 

 

Skew
Quintile

Low -1.64 *** -0.37 -0.03 -2.07 *** -0.83 ** 0.14
2 -4.10 *** 0.02 0.02 -4.11 *** -0.53 -0.01
3 -7.73 *** 0.22 0.04 -9.66 *** -1.80 -0.46
4 -11.53 *** 0.43 -0.63 -24.47 *** -4.31 ** -1.18 *

High -40.68 *** -8.99 *** -3.20 *** -55.25 *** -12.82 *** -2.09

Low-High 39.04 *** 8.62 *** 3.17 *** 53.19 *** 11.99 *** 2.23
(t-stat) (9.25) (3.92) (4.85) (12.28) (4.25) (1.39)

Call Options
Days to Expiration

7 18 48

Put Options
Days to Expiration

7 18 48
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Table IA.XI 
Unconditional Sorts on Raw Third Moment 

This table reports CAPM pricing errors for portfolios of individual equity options taken from the 
Ivy database over the period 1996 to 2009.  Option portfolios are formed by sorting on the raw 
third moment of the option return (numerator of our ex-ante skewness measure) and returns are 
holding-period returns to expiration as in equation (3), using the midpoint of the bid and ask 
prices as the proxy for price. We report results for both call options (first set of columns) and put 
options (last set of columns).  We report CAPM pricing errors for the option portfolios obtained 
by regressing option portfolio returns on excess market returns as in equation (5).  In the final two 
rows we report differences in CAPM pricing errors across the high and low coskewness quintiles 
along with GMM t-statistics calculated using the approach of Newey and West (1987). Statistical 
significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. 

 

Skew
Quintile

Low -1.05 -0.08 0.06 -2.73 *** -1.12 ** -0.04
2 -3.91 ** 0.19 -0.10 -3.64 ** -1.35 -0.28
3 -6.76 ** 0.90 -0.23 -9.14 *** -1.31 -0.42
4 -9.97 ** 0.57 -0.20 -22.41 *** -3.09 -0.64

High -40.70 *** -9.37 *** -2.24 ** -58.59 *** -14.00 *** -1.28

Low-High 39.65 *** 9.29 *** 2.30 *** 55.86 *** 12.88 *** 1.24
(t-stat) (8.94) (3.73) (2.62) (15.09) (4.58) (0.70)

Call Options
Days to Expiration

7 18 48

Put Options
Days to Expiration

7 18 48
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Table IA.XII 
Stock CAPM Pricing Errors Controlling for lagged six-month return 

This table reports CAPM pricing errors for portfolios stocks underlying the individual equity 
options taken from the Ivy database over the period 1996 to 2009.   On each portfolio 
formation date we first sort the underlying stocks for options of a given maturity into deciles 
based on the six-month return just prior to the portfolio formation date. Then, within each 
decile, we rank stocks into two bins based on the ex-ante skewness of the options written on 
them. Next we equal-weight the returns for stocks with the same ex-ante skewness rank 
across all deciles. After creating two such portfolios for each formation date in our sample, 
we estimate and compare the stock CAPM pricing errors. We report results for both call 
options (first set of columns) and put options (last set of columns).  We report CAPM pricing 
errors for the stock portfolios obtained by regressing stock portfolio returns on excess market 
returns as in equation (5).  In the final two rows we report differences in CAPM pricing errors 
across the high and low skewness quintiles along with GMM t-statistics calculated using the 
approach of Newey and West (1987). Statistical significance at the 10%, 5%, and 1% 
significance levels is indicated by *, **,  and ***, respectively. 

 

Skew
Rank 7 18 48 7 18 48

Low -0.11 -0.02 -0.02 -0.13 0.02 -0.03
High -0.12 0.01 -0.05 -0.20 -0.01 -0.01

Low-High 0.00 -0.03 0.03 0.07 0.04 -0.02
(t-stat) (0.09) -(0.98) (1.11) (1.43) (1.28) -(1.23)

Days to Expiration
Call Options Put Options

Days to Expiration
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Table IA.XIII 
Double Sorts 

This table reports the estimated CAPM pricing errors for portfolios of individual equity options taken 
from the Ivy database over the period 1996 to 2009.  We adopt a double sort procedure to net out the 
influence of a particular characteristic.  For a given portfolio formation date, we first sort options 
according to a given characteristic into 10 portfolios and then within each decile, sort options into two 
portfolios by ex-ante skewness.  We then average the one-period returns across all characteristic 
sorted portfolios to create returns of two portfolios with similar levels of the characteristic but 
different skewness. We conduct  this double sorting exercise separately for volume (Panel A), vega 
(Panel B), volatility smirk (Panel C), the bid-ask spread (Panel D), prior six-month stock return 
(Panel E), underlying stock volatility (Panel F), underlying stock price (Panel G), underlying stock 
expected return (Panel H), and option price (Panel I). We obtain CAPM pricing errors by regressing 
option portfolio returns on excess market returns as in equation (5). We report results for both call 
options (first set of columns) and put options (last set of columns).  In the final rows of each panel we 
report differences in CAPM pricing errors across the low and high skewness portfolios along with 
Newey-West (1987) t-statistics. Statistical significance at the 10%, 5%, and 1% level is indicated by 
*, **, and ***, respectively. 

Skew

Rank 7 18 48
Low -2.94 * 0.38 0.40 -3.78 ** -0.91 0.24
High -21.93 *** -3.48 * -1.48 ** -34.65 *** -7.41 *** -1.29

Low-High 18.99 *** 3.85 *** 1.88 *** 30.87 *** 6.50 *** 1.52
(t-stat) (6.81) (2.97) (4.52) (10.56) (3.63) (1.54)

Low -3.70 ** 0.29 0.20 -4.22 *** -0.87 0.15
High -21.17 *** -3.39 * -1.28 * -34.22 *** -7.45 *** -1.20

Low-High 17.46 *** 3.67 *** 1.48 *** 30.00 *** 6.58 *** 1.35
(t-stat) (6.30) (2.87) (4.01) (9.99) (3.79) (1.37)

Low -3.16 * 0.57 0.55 -4.16 -1.42 -0.01
High -20.22 *** -2.64 -0.73 -42.79 ** -9.06 *** -1.74

Low-High 17.05 *** 3.21 * 1.28 ** 38.63 *** 7.64 *** 1.74
(t-stat) (4.79) (1.74) (2.53) (11.71) (3.46) (1.50)

Low -4.85 ** 0.28 0.11 -10.45 *** -1.26 0.22
High -20.04 *** -3.39 * -1.19 * -28.05 *** -7.06 *** -1.27

Low-High 15.19 *** 3.67 *** 1.30 *** 17.60 *** 5.79 *** 1.49 *

(t-stat) (8.55) (3.28) (3.32) (7.83) (5.41) (1.84)

Put Options
Days to Expiration

Panel B: Controlling for Vega

Panel C: Controlling for Volatility Smirk

Panel D: Controlling for Bid-Ask Spread

Panel A: Controlling for Volume

Days to Expiration
Call Options
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Table IA.XIII (continued) 
 

Low -3.32 ** 0.29 0.08 -4.18 ** -1.45 ** -0.33
High -21.58 *** -3.02 -0.98 -33.81 *** -7.28 *** -0.87

Low-High 18.25 *** 3.32 ** 1.06 ** 29.63 *** 5.83 *** 0.54
(t-stat) (6.17) (2.28) (2.32) (10.64) (3.36) (0.53)

Low -3.33 ** 0.30 0.28 -4.31 *** -1.06 0.06
High -21.55 *** -3.40 * -1.36 ** -34.12 *** -7.26 *** -1.11

Low-High 18.21 *** 3.71 *** 1.64 *** 29.81 *** 6.20 *** 1.17
(t-stat) (6.48) (2.95) (4.62) (10.26) (3.47) (1.23)

Low -3.36 ** 0.14 0.09 -4.01 ** -1.34 * -0.05
High -21.52 *** -3.24 * -1.17 * -34.42 *** -6.99 *** -1.01

Low-High 18.15 *** 3.39 ** 1.26 *** 30.41 *** 5.65 *** 0.96
(t-stat) (6.27) (2.46) (3.29) (11.14) (3.37) (1.02)

Low -3.33 ** 0.21 -0.03 -4.41 *** -1.37 * -0.24
High -21.54 *** -3.31 * -1.05 -34.03 *** -6.95 *** -0.82

Low-High 18.21 *** 3.51 ** 1.02 ** 29.62 *** 5.58 *** 0.58
(t-stat) (6.34) (2.49) (2.35) (11.06) (3.24) (0.60)

Low -5.81 ** 0.12 0.07 -13.02 *** -1.28 0.35
High -19.07 *** -3.23 * -1.14 * -25.52 *** -7.04 *** -1.40

Low-High 13.26 *** 3.35 *** 1.21 *** 12.50 *** 5.76 *** 1.75 ***

(t-stat) (6.57) (2.98) (3.27) (5.39) (5.35) (2.46)

Panel I: Controlling for Option Price

Panel E: Controlling for Prior Six-Month Stock Return

Panel F: Controlling for Stock Volatility

Panel G: Controlling for Stock Price

Panel H: Controlling for Stock Expected Return
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Table IA.XIV 
Bootstrapped p-values and Simulation p-values 

Panel A reports the estimated CAPM pricing errors for individual equity option portfolios taken 
from the Ivy database over the period 1996 to 2009.  The portfolios are formed every-other 
month so that returns are non-overlapping. The portfolios are constructed by sorting on 
expected skewness as in equation (4) and the returns are holding-period returns as in equations 
(3) using the midpoint of the bid and ask prices as the proxy for price.  We estimate a one-
factor model as in equation (5) on the portfolio returns and report the intercept from those 
estimations.  The bottom rows of Panel A report differences in CAPM pricing errors across the 
high and low skewness portfolios along with t-statistics and bootstrapped p-values that test 
whether these differences are equal to zero. Panel B reports the results of a Black-Scholes 
(1973) simulation exercise in which the CAPM holds instantaneously, skewness has no effect 
on pricing, and the simulation is calibrated to match the moments of the actual non-overlapping 
data.   The simulation is repeated 1,000 times, and we report the average CAPM pricing error 
(alpha) for each skewness/maturity portfolio across simulations. The bottom rows of Panel B 
report differences in CAPM alphas across the high and low skewness portfolios along with the 
fraction of simulations which generated CAPM alpha spreads as extreme as those in Panel A. 
Panel C reports the results of a Merton (1976) jump-diffusion simulation exercise in which the 
CAPM holds instantaneously. In addition to lognormal continuous movements in stock prices, 
idiosyncratic jumps in the stock price moves are allowed as well.  Skewness again has no effect 
on pricing, and the simulation is calibrated to match the moments of the actual non-overlapping 
data.   The simulation is repeated 1,000 times, and we report the average CAPM alpha for each 
skewness/maturity portfolio across simulations. The bottom rows of Panel C reports differences 
in CAPM alphas across the high and low skewness portfolios along with the fraction of 
simulations that generated CAPM alpha spreads as extreme as those in Panel A. 

 

Skew
Rank 7 18 48 7 18 48
Low -1.00 -0.13 0.48 -1.11 0.04 0.47
High -52.74 -14.13 -2.93 -57.68 -16.91 -2.49

Low-High 51.73 14.01 3.40 56.57 16.95 2.95
t-stat (11.37) (5.93) (3.91) (9.37) (5.77) (2.41)

p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Low 0.23 0.17 0.12 -0.30 -0.24 -0.17
High 1.70 0.37 0.32 -6.10 -1.08 -0.98

Low-High -1.47 -0.20 -0.19 5.80 0.84 0.82
p-values (0.00) (0.00) (0.00) (0.00) (0.00) (0.09)

Panel B: Black-Scholes Simluation (percent alphas)

Panel A. Bootstrap Results
Call Options Put Options

Days to Expiration Days to Expiration
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Table IA.XIV (continued) 
 

(1) - Mean Values:  λ = 2, α=0.00, δ=.0224, σREL = 1.0059
Low 0.18 0.15 0.12 -0.28 -0.20 -0.17
High -2.91 0.34 0.23 -10.25 -2.59 -1.01

Low-High 3.09 -0.18 -0.11 9.96 2.38 0.85
p-values (0.00) (0.00) (0.00) (0.00) (0.00) (0.10)

(2) - Max Values, Zero Mean Jump:  λ = 22, α = 0.00, δ = 0.0837, σREL = 1.602
Low 0.57 0.47 3.33 0.31 0.21 3.02
High -9.45 -0.91 4.89 -20.91 -4.55 4.93

Low-High 10.03 1.38 -1.56 21.23 4.76 -1.91
p-values (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

(3) - Max Values, Max Positive Mean Jump:  λ = 22, α = 0.002, δ = 0.0837, σREL = 1.602
Low 0.66 0.49 3.44 0.24 0.19 2.94
High -11.15 -1.43 4.98 -19.26 -3.95 4.84

Low-High 11.81 1.92 -1.54 19.50 4.14 -1.90
p-values (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

(4) - Max Values, Max Negative Mean Jump:  λ = 22, α = -0.002, δ = 0.0837, σREL = 1.602
Low 0.49 0.43 3.23 0.41 0.26 3.12
High -7.83 -0.36 4.84 -21.86 -4.80 5.11

Low-High 8.32 0.78 -1.61 22.27 5.06 -2.00
p-values (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel C: Merton (1976) Jump Simluation (percent alphas)

 


